organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui-Ying An,^a Jian-Hua Xu,^a Shea-Lin Ng^b and Hoong-Kun Fun^b*

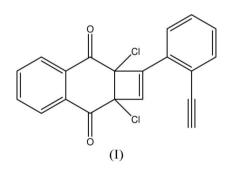
^aDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.032 wR factor = 0.086 Data-to-parameter ratio = 37.8

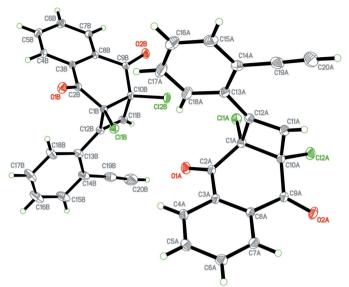
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


© 2007 International Union of Crystallography All rights reserved

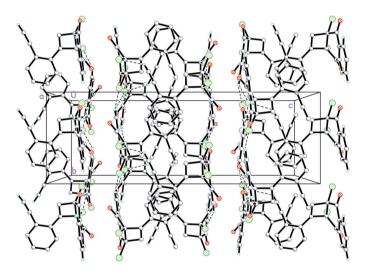
2a,8a-Dichloro-1-(2-ethynylphenyl)-2a,8adihydrocyclobuta[b]naphthalene-3,8-dione

The title compound, $C_{20}H_{10}Cl_2O_2$, crystallizes with two crystallographically independent molecules in the asymmetric unit. In both molecules, the cyclohexene ring adopts a boat conformation. The molecules are linked into a sheet parallel to the *ab* plane by C-H···Cl hydrogen bonds and C-H··· π interactions.

Comment


In continuation of our recent investigation on photoinduced reactions of quinones with alkynes (Wang *et al.*, 2005), we have studied the photoreaction of 2,3-dichloro-1,4-naphthoquinone with 1,2-diethynylbenzene and found that this proceeded *via* the $\pi\pi^*$ excited triplet state of the quinone to give the title compound, (I), as a [2 + 2]-cycloaddition product. An X-ray crystallographic analysis was undertaken to establish its structure and conformation.

The asymmetric unit of (I) contains two molecules, A and B (Fig. 1). The bond lengths and angles of these two molecules agree with each other and have normal values (Allen et al., 1987), and are comparable to those in a related structure [(II); Shi et al., 2003]. In both molecules, the cyclohexene ring adopts a boat conformation, with atoms C2 and C9 deviating from the C1/C3/C8/C10 plane by 0.238 (1) and 0.187 (1) Å, respectively, in molecule A and by 0.224 (1) and 0.174 (1) Å, respectively, in B. The Cremer & Pople (1975) puckering parameters Q, θ and φ are 0.380 (1) Å, 99.5 (2) and 229.2 (2)°, respectively, in molecule A, and 0.355(1)Å, 100.0(2) and 229.9 (2)° in B. In both A and B, the C13–C18 benzene ring is twisted slightly away from the cyclobutene ring (C1/C10-C12), with a dihedral angle of $13.33(7)^{\circ}$ in molecule A and 19.77 (7)° in B; the corresponding dihedral angle in (II) is 2.9 (2) $^{\circ}$. The dihedral angle between the cyclobutene ring and the C3–C8 benzene ring is $88.81(6)^{\circ}$ in molecule A and 89.50 (6)° in *B*, comparable to 87.9 (2)° in (II).


In the crystal structure, $C5A-H5AA\cdots Cl1A^{i}$ and $C7A-H7AA\cdots Cl1A^{ii}$ hydrogen bonds link A-type molecules into a

Received 18 January 2007 Accepted 22 January 2007

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Figure 2

The crystal packing of (I), viewed down the *a* axis, showing the sheets. Dashed lines indicate hydrogen bonds. H atoms not involved in the interactions have been omitted.

layer parallel to the *ab* plane. Similarly, *B*-type molecules are linked into another layer parallel to the *ab* plane by C4*B*– H4BA···Cl2 B^{iii} , C5*B*–H5BA···Cl1 B^{iv} and C7*B*– H7BA···Cl1 B^{v} hydrogen bonds (symmetry codes are given in Table 1). C20A–H20A···Cl1 B^{vi} hydrogen bonds cross-link adjacent *A*- and *B*-type layers into a sheet-like structure (Fig. 2 and Table 1). A C–H··· π interaction involving the C3*B*–C8*B* benzene ring (Table 1) is also observed within a sheet.

Experimental

Compound (I) was prepared by the photolysis of a benzene solution (60ml) of 2,3-dichloro-1,4-naphthoquinone (3 mmol) in the presence of an excess amount (1.5 equiv.) of 1,2-diethynylbenzene. The

Crystal data

 $C_{20}H_{10}Cl_2O_2$ $M_r = 353.18$ Orthorhombic, *Pna2*₁ a = 16.0627 (2) Å b = 8.0482 (1) Å c = 24.0821 (3) Å V = 3113.23 (7) Å³

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.822, T_{\max} = 0.883$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.086$ S = 1.0416384 reflections 434 parameters H-atom parameters constrained

Z = 8 D_x = 1.507 Mg m⁻³ Mo K α radiation μ = 0.43 mm⁻¹ T = 100.0 (1) K Block, orange 0.47 × 0.41 × 0.30 mm

127742 measured reflections 16384 independent reflections 15176 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 37.5^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0511P)^{2} + 0.4718P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.55 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 8036 Friedel pairs Flack parameter: 0.54 (2)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5A - H5AA \cdots Cl1A^{i}$	0.93	2.78	3.603 (1)	148
$C7A - H7AA \cdots Cl1A^{ii}$	0.93	2.72	3.651 (1)	177
$C4B - H4BA \cdots Cl2B^{iii}$	0.93	2.83	3.715 (1)	160
$C5B-H5BA\cdots Cl1B^{iv}$	0.93	2.77	3.584 (1)	147
$C7B - H7BA \cdots Cl1B^{v}$	0.93	2.75	3.682 (1)	176
$C20A - H20A \cdot \cdot \cdot Cl1B^{vi}$	0.97	2.80	3.607 (1)	142
$C15A - H15A \cdots Cg1^{vii}$	0.93	2.55	3.479 (1)	175

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z$; (iii) x, y + 1, z; (iv) $x - \frac{1}{2}, -y + \frac{5}{2}, z$; (v) $x - \frac{1}{2}, -y + \frac{3}{2}, z$; (vi) $-x + 1, -y + 1, z - \frac{1}{2}$; (vii) $-x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}, Cg1$ is the centroid of the C3*B*-C8*B* benzene ring.

H atoms were placed in calculated positions and constrained to ride on their carrier atoms, with C–H = 0.93–1.01 Å and $U_{\rm iso}({\rm H})$ = $1.2U_{\rm eq}({\rm C})$. The structure is an inversion twin with almost equal contributions of the two components.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, H.-G., Li, X.-M., Xu, J.-H., Zhang, S.-S. & Fun, H.-K. (2003). Acta Cryst. E59, o1824–o1826.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, L., Zhang, Y., Hu, H. Y., Fun, H. K. & Xu, J. H. (2005). J. Org. Chem. 70, 3850–3858.